
recursion
by regina and add

slides: links.cs61a.org/recursion-review

3 Steps for Recursion

1. Base Case: What’s the simplest possible input to a
function?

2. Recursive Call: Calling your function on a “simpler” input
3. Using the output of the recursive call to solve our entire

problem

Recursion Tips

● Generally, recursive solutions will have some kind of if/elif/else
structure

● When writing the body of your function, pretend that your function is
already complete and perfect!
○ the “recursive leap of faith”

● Make sure each return statement is returning the same data type
● If you already have a base case, make sure each recursive call’s

arguments help you get “closer” to the base case

factorial
Write factorial as a function.

Recall: n! = n * (n-1) * … * 1
def factorial(n):

 """

 >>> factorial(3) # 3 * 2 * 1

 6

 >>> factorial(4) # 4 * 3 * 2 * 1

 24

 """

 return ____

factorial
Write factorial as a function.

Recall: n! = n * (n-1) * … * 1
def factorial(n):

 """

 >>> factorial(3) # 3 * 2 * 1

 6

 >>> factorial(4) # 4 * 3 * 2 * 1

 24

 """

 return n * factorial(n-1)

list prod
Write list_prod, which
takes a list of numbers and
returns the product of all the
numbers in the list. Do not
use any for loops or built in
functions.

def list_prod(lst):

list prod
Write list_prod, which
takes a list of numbers and
returns the product of all the
numbers in the list. Do not
use any for loops or built in
functions.

def list_prod(lst):

 if len(lst) == 0:

 return 1

 return lst[0] * list_prod(lst[1:])

won’t you be my neighbor?
Implement repeat_digits,
which takes in a positive
integer N, and returns a
number with each digit
repeated.

def repeat_digits(n):

 """

 >>> repeat_digits(1234)

 11223344

 """

 last, rest = _____, _____

 if _____:

 return _____

 return _____(_____) * _____ + _____

won’t you be my neighbor?
Implement repeat_digits,
which takes in a positive
integer N, and returns a
number with each digit
repeated.

def repeat_digits(n):

 """

 >>> repeat_digits(1234)

 11223344

 """

 last, rest = n % 10, n // 10

 if rest == 0:

 return last * 11 # or last * 10 + last

 return repeat_digits(rest) * 100 + last * 11

repeated
In Homework 2 you
encountered the repeated
function, which takes
arguments f and n and
returns a function equivalent
to the nth repeated
application of f.

This time, we want to write
repeated recursively. You'll
want to use compose1, given
for your convenience.

def compose1(f, g):

 """Return a function h, such that h(x) = f(g(x))."""

 def h(x):

 return f(g(x))

 return h

def repeated(f, n):

 """

 >>> add_three = repeated(increment, 3)

 >>> add_three(5)

 8

 >>> repeated(triple, 5)(1) # 3 * 3 * 3 * 3 * 3 * 1

 243

 """

 if n == 0:

 return _____

 return _____

repeated
In Homework 2 you
encountered the repeated
function, which takes
arguments f and n and
returns a function equivalent
to the nth repeated
application of f.

This time, we want to write
repeated recursively. You'll
want to use compose1, given
for your convenience.

def compose1(f, g):

 """Return a function h, such that h(x) = f(g(x))."""

 def h(x):

 return f(g(x))

 return h

def repeated(f, n):

 """

 >>> add_three = repeated(increment, 3)

 >>> add_three(5)

 8

 >>> repeated(triple, 5)(1) # 3 * 3 * 3 * 3 * 3 * 1

 243

 """

 if n == 0:

 return lambda x: x # Identity function

 return compose1(f, repeated(f, n-1))

group link
[fa15] Implement
group_link, which takes a
one-argument function f
and a Link instance s. It
returns a linked list of
groups. Each group is a
Link instance containing all
the elements x in s that
return equal values for f(x).

def group_link(f, s):

 """

 >>> five = Link(3, Link(4, Link(5, Link(2, Link(1)))))

 >>> group_link(lambda x: x % 2, five)

 Link(Link(3, Link(5, Link(1))), Link(Link(4, Link(2))))

 >>> group_link(lambda x: x % 3, five)

 Link(Link(3), Link(Link(4, Link(1)), Link(Link(5,

 Link(2)))))

 """

 if s is Link.empty:

 return s

 else:

 a = filter_link(lambda x : ____, ____)

 b = filter_link(lambda x : ____, ____)

 return ________

group link
[fa15] Implement
group_link, which takes a
one-argument function f
and a Link instance s. It
returns a linked list of
groups. Each group is a
Link instance containing all
the elements x in s that
return equal values for f(x).

def group_link(f, s):

 """

 >>> five = Link(3, Link(4, Link(5, Link(2, Link(1)))))

 >>> group_link(lambda x: x % 2, five)

 Link(Link(3, Link(5, Link(1))), Link(Link(4, Link(2))))

 >>> group_link(lambda x: x % 3, five)

 Link(Link(3), Link(Link(4, Link(1)), Link(Link(5,

 Link(2)))))

 """

 if s is Link.empty:

 return s

 else:

 a = filter_link(lambda x : f(x) == f(s.first), s)

 b = filter_link(lambda x : f(x) != f(s.first), s)

 return Link(a, group_link(f, b))

summer camp
Implement sums, which takes
two positive integers n and k.
It returns a list of lists
containing all the ways that a
list of k positive integers can
sum to n. Results can
appear in any order.

def sums(n, k):

 """

 >>> sums(2, 2)

 [[1, 1]]

 >>> sums(2, 3)

 []

 >>> sums(4, 2)

 [[3, 1], [2, 2], [1, 3]]

 """

 if ____:

 return ____

 y = []

 for x in ____:

 y.extend([____ for s in sums(____)])

 return y

summer camp
Implement sums, which takes
two positive integers n and k.
It returns a list of lists
containing all the ways that a
list of k positive integers can
sum to n. Results can
appear in any order.

def sums(n, k):

 """

 >>> sums(2, 2)

 [[1, 1]]

 >>> sums(2, 3)

 []

 >>> sums(4, 2)

 [[3, 1], [2, 2], [1, 3]]

 """

 if k == 1:

 return [[n]]

 y = []

 for x in range(1, n):

 y.extend([s + [x] for s in sums(n-x, k-1)])

 return y

summer camp
Implement sums, which takes
two positive integers n and k.
It returns a list of lists
containing all the ways that a
list of k positive integers can
sum to n. Results can
appear in any order.

CHALLENGE EDITION

f = lambda x, y: (x and [_____ for z in y] + f(_____,

_____)) or []

def sums(n, k):

 g = lambda w: (w and f(_____)) or [[]]

 return [v for v in g(k) if sum(v) == n]

summer camp
Implement sums, which takes
two positive integers n and k.
It returns a list of lists
containing all the ways that a
list of k positive integers can
sum to n. Results can
appear in any order.

CHALLENGE EDITION

f = lambda x, y: (x and [[x] + z for z in y] + f(x-1, y))

or []

def sums(n, k):

 g = lambda w: (w and f(n, g(w-1))) or [[]]

 return [v for v in g(k) if sum(v) == n]

thanos
[su18] A messenger function is a function
that takes a single word and returns another
messenger function, until a period is
provided as input, in which case a sentence
containing the words provided is returned.
At least one word must be provided before
the period. We have provided
simple_messenger as such a function.

Write thanos_messenger, which is a
messenger function that discards every
other word that’s provided. The first word
should be included in the final sentence, the
second word should be discarded, and so
on.

>>> simple_messenger("Avengers")("assemble")(".")

'Avengers assemble.'

>>> simple_messenger("Get")("this")("man")("a")("shield")(".")

'Get this man a shield.'

def thanos_messenger(word):

 """A messenger function that discards every other word.

 >>> thanos_messenger("I")("don't")("feel")("so")("good")(".")

 'I feel good.'

 >>>thanos_messenger("Thanos")("always")("kills")("half")(".")

 'Thanos kills.'

 """

 assert word != '.', 'No words provided!'

 def make_new_messenger(message, skip_next):

 def new_messenger(word):

 if word == '.':

 return _____

 if _____:

 return _____

 return _____

 return _____

 return _____

thanos
[su18] A messenger function is a function
that takes a single word and returns another
messenger function, until a period is
provided as input, in which case a sentence
containing the words provided is returned.
At least one word must be provided before
the period. We have provided
simple_messenger as such a function.

Write thanos_messenger, which is a
messenger function that discards every
other word that’s provided. The first word
should be included in the final sentence, the
second word should be discarded, and so
on.

>>> simple_messenger("Avengers")("assemble")(".")

'Avengers assemble.'

>>> simple_messenger("Get")("this")("man")("a")("shield")(".")

'Get this man a shield.'

def thanos_messenger(word):

 """A messenger function that discards every other word.

 >>> thanos_messenger("I")("don't")("feel")("so")("good")(".")

 'I feel good.'

 >>>thanos_messenger("Thanos")("always")("kills")("half")(".")

 'Thanos kills.'

 """

 assert word != '.', 'No words provided!'

 def make_new_messenger(message, skip_next):

 def new_messenger(word):

 if word == '.':

 return message + '.'

 if skip_next:

 return make_new_messenger(message, False)

 return make_new_messenger(message + " " + word, True)

 return new_messenger

 return make_new_messenger(word, True)

zombies
[fa15] In this question, assume that all of f,
g, and h are functions that take one
non-negative integer argument and return a
non-negative integer. You do not need to
consider negative or fractional numbers.

Implement the higher-order function
decompose1, which takes two functions f
and h as arguments. It returns a function g
that relates f to h in the following way: For
any non-negative integer x, h(x) equals
f(g(x)). Assume that decompose1 will be
called only on arguments for which such a
function g exists. Furthermore, assume that
there is no recursion depth limit in Python.

def decompose1(f, h):

 """

 >>> add_one = lambda x: x + 1

 >>> square_then_add_one = lambda x: x * x + 1

 >>> g = decompose1(add_one, square_then_add_one)

 >>> g(5)

 25

 >>> g(10)

 100

 """

 def g(x):

 def r(y):

 if _____:

 return _____

 else:

 return _____

 return r(0)

 return _____

zombies
[fa15] In this question, assume that all of f,
g, and h are functions that take one
non-negative integer argument and return a
non-negative integer. You do not need to
consider negative or fractional numbers.

Implement the higher-order function
decompose1, which takes two functions f
and h as arguments. It returns a function g
that relates f to h in the following way: For
any non-negative integer x, h(x) equals
f(g(x)). Assume that decompose1 will be
called only on arguments for which such a
function g exists. Furthermore, assume that
there is no recursion depth limit in Python.

def decompose1(f, h):

 """

 >>> add_one = lambda x: x + 1

 >>> square_then_add_one = lambda x: x * x + 1

 >>> g = decompose1(add_one, square_then_add_one)

 >>> g(5)

 25

 >>> g(10)

 100

 """

 def g(x):

 def r(y):

 if h(x) == f(y):

 return y

 else:

 return r(y+1)

 return r(0)

 return g

good luck!

