recursion

slides: links.cs61a.org/recursion-review



3 Steps for Recursion

1. Base Case: What's the simplest possible input to a

function?
2. Recursive Call: Calling your function on a “simpler” input
3. Using the output of the recursive call to solve our entire

problem



Recursion Tips

Generally, recursive solutions will have some kind of if/elif/else
structure
When writing the body of your function, pretend that your function is
already complete and perfect!

o the “recursive leap of faith”

Make sure each return statement is returning the same data type
If you already have a base case, make sure each recursive call’s
arguments help you get “closer” to the base case



factorial

Write factorial as a function.

Recall: n!=n*(n-1)* ... * 1




factorial

Write factorial as a function.

Recall: n!=n*(n-1)* ... * 1




list prod

Write 1ist_prod, which
takes a list of numbers and
returns the product of all the
numbers in the list. Do not
use any for loops or built in
functions.




list prod

Write 1ist_prod, which
takes a list of numbers and
returns the product of all the
numbers in the list. Do not
use any for loops or built in
functions.




won’'t you be my

Implement repeat_digits,
which takes in a positive
integer N, and returns a
number with each digit
repeated.

neighbor?




won’'t you be my

Implement repeat_digits,
which takes in a positive
integer N, and returns a
number with each digit
repeated.

neighbor?




repeated

In Homework 2 you
encountered the repeated
function, which takes
arguments f and n and
returns a function equivalent
to the nth repeated
application of f.

This time, we want to write
repeated recursively. You'll
want to use compose1, given
for your convenience.




repeated

In Homework 2 you
encountered the repeated
function, which takes
arguments f and n and
returns a function equivalent
to the nth repeated
application of f.

This time, we want to write
repeated recursively. You'll
want to use compose1, given
for your convenience.




group link

[fa15] Implement
group_link, which takes a
one-argument function f
and a Link instance s. It
returns a linked list of
groups. Each group is a
Link instance containing all
the elements x in s that
return equal values for f(x).




group link

[fa15] Implement
group_link, which takes a
one-argument function f
and a Link instance s. It
returns a linked list of
groups. Each group is a
Link instance containing all
the elements x in s that
return equal values for f(x).




summer camp

Implement sums, which takes
two positive integers n and k.
It returns a list of lists
containing all the ways that a
list of k positive integers can
sum to n. Results can
appear in any order.




summer camp

Implement sums, which takes
two positive integers n and k.
It returns a list of lists
containing all the ways that a
list of k positive integers can
sum to n. Results can
appear in any order.




summer camp

Implement sums, which takes
two positive integers n and k.
It returns a list of lists
containing all the ways that a
list of k positive integers can
sum to n. Results can
appear in any order.

CHALLENGE EDITION




summer camp

Implement sums, which takes
two positive integers n and k.
It returns a list of lists
containing all the ways that a
list of k positive integers can
sum to n. Results can
appear in any order.

CHALLENGE EDITION




thanos

[su18] A messenger function is a function
that takes a single word and returns another
messenger function, until a period is
provided as input, in which case a sentence
containing the words provided is returned.
At least one word must be provided before
the period. We have provided
simple_messenger as such a function.

Write thanos_messenger, which is a
messenger function that discards every
other word that’s provided. The first word
should be included in the final sentence, the
second word should be discarded, and so
on.




thanos

[su18] A messenger function is a function
that takes a single word and returns another
messenger function, until a period is
provided as input, in which case a sentence
containing the words provided is returned.
At least one word must be provided before
the period. We have provided
simple_messenger as such a function.

Write thanos_messenger, which is a
messenger function that discards every
other word that’s provided. The first word
should be included in the final sentence, the
second word should be discarded, and so
on.




zombies

[fa15] In this question, assume that all of f,
g, and h are functions that take one
non-negative integer argument and return a
non-negative integer. You do not need to
consider negative or fractional numbers.

Implement the higher-order function
decompose1, which takes two functions f
and h as arguments. It returns a function g
that relates f to h in the following way: For
any non-negative integer x, h(x) equals
f(g(x)).Assume that decompose1 will be
called only on arguments for which such a
function g exists. Furthermore, assume that
there is no recursion depth limit in Python.




zombies

[fa15] In this question, assume that all of f,
g, and h are functions that take one
non-negative integer argument and return a
non-negative integer. You do not need to
consider negative or fractional numbers.

Implement the higher-order function
decompose1, which takes two functions f
and h as arguments. It returns a function g
that relates f to h in the following way: For
any non-negative integer x, h(x) equals
f(g(x)).Assume that decompose1 will be
called only on arguments for which such a
function g exists. Furthermore, assume that
there is no recursion depth limit in Python.




good luck!



