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1 Introduction

The flipping of a coin is perhaps one of the most longstanding symbols of probability and chance that
mathematicians have used. Of course, classically, we have the argument that by symmetry, the probability
of a coin landing on heads or tails is equal - and this is true. However, the statement that it is 1

2 for both
sides is untrue! We have of course, neglected to consider the possibility of the coin landing on its side. “This
is impossible!” one may exclaim. I thought the same. However, as I have begun learning physics, I have
learned to explore the extremes of every system. Equilibrium in physics is often a delicate state, and if one
does not have a thorough understanding of the system in question, they may only be able to discern the
‘common sense’ positions of equilibrium. When we roll a dice, it seems clear that it will land on one of its
six faces; but why can it not land on a corner? After all, its center of mass can be directly above its point of
contact with the surface, and in this case, it will be stable. Going further, I wondered if we flip an atomically
sharp pencil a large number of times, if it could land on its tip? It turns out – due to a curious phenomenon
caused by quantum mechanics, it cannot !

This exploration of the extremes has led me to wonder whether a flipping coin can achieve a stable
equilibrium position on its edge.

Figure 1: Spinning Coin1
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To explore this question, I decided to first model the coin with some idealizations and approximations. I hope
to have sufficiently justified these approximations throughout this exploration, and in doing so, demonstrate
that the overall model is realistic. This model has several equations that cannot be solved analytically for
an exact solution, and so after developing this model, I implemented it into a computer simulation. Simply
brute forcing over numbers in an intelligent fashion brings forth numeric solutions! The simulation proceeds
to use these numeric solutions to iterate over coin tosses with different initial parameters. I then used the
results of the simulation to calculate the probability of a coin landing on its edge.

1As a sign convention, angular velocity ω is taken to be positive when the coin is spinning in the counterclockwise direction
(as shown in Figure 1).
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2 Theory

There is an important quantity in rotational mechanics known as moment of inertia I. It acts as the rotational
analogue of the linear mechanical quantity mass, and is thus extremely important in our discussion of the
coin’s rotation. To find an object’s moment of inertia about a certain axis of rotation is quite simple - we
integrate over every point in the object, using the fact that an infinitesimal point’s moment of inertia about
an axis is MR2. For our cylindrical coin, we take the axis of rotation to be the ẑ vector, known as the ’central
diameter’ of a cylinder. To begin finding a solid cylinder’s moment of inertia about ẑ, we decompose it into
a rectangles with infinitesimal thickness dα, all rotating about their geometrical center. We then integrate
over these rectangles to find the overall moment of inertia I.

Figure 2: Rectangle Spinning about ẑ
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We begin by finding the moment of inertia of a rectangle about its geometrical center. We use the
perpendicular axis theorem, stating that if an object is a plane figure, the moment of inertia about an
axis perpendicular to the plane is equal to the sum of the moments of inertia about any two mutually
perpendicular axes lying in the plane and intersecting at the perpendicular axis. It is known that the

moment of inertia of the rectangle Ix through x̂ is mw2

12 and likewise, the moment of inertia Iy through ŷ is
ml2

12 . By the perpendicular axis theorem, Iz = Ix + Iy = mw2+l2

12 .
We move on to apply this to our cylinder. By taking slices of thickness dα, we see that each slice is a

rectangle with a width equal to the thickness T of the cylinder. The length is variable. Now, we integrate
over α, taking α to be the vertical distance of each rectangle from the center of the cylinder. Note that the
length l is thus 2

√
R2 − α2.

I =

∫ R

−R

T 2 + 4(R2 − α2)

12
2ρT

√
R2 − α2 dα

The rectangle has a mass given by the area of the rectangle multiplied by its infinitesimal thickness dα,
multiplied by the density of the cylinder.

=
ρT

6

∫ R

−R

(
T 2 + 4(R2 − α2)

)√
R2 − α2 dα

=
ρT

6

(
T 2

∫ R

−R

√
R2 − α2 dα+ 4

∫ R

−R
(R2 − α2)

3
2 dα

)
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The equation
√
R2 − α2 from −R to R is the equation of a semicircle of radius R. Thus the area under this

curve is πR2. The integral of (R2 − a2)
3
2 is beyond the scope of this discussion2; the result is 3πR4

8 .

=
ρT

6

(πT 2R2

2
+

12πR4

8

)
=

1

6
πR2Tρ

(T 2

2
+

3R2

2

)
= M

(T 2

12
+
R2

4

)
=
MT 2 + 3MR2

12

In a coin, thickness T is very small compared to its radius R. If the two are in the ratio T : R = β where

β � 1, we can see that T 2

12 + R2

4 = β2R2

12 + R2

4 . As β approaches smaller values, the βR2

12 term falls off rapidly,

so that we can approximate the expression to be R2

4 . Thus we approximate the moment of inertia of the

cylinder to be MR2

4 .

3 Model

We wish to model the coin’s interactions with the surface that it’s bouncing on. To start, we must make a
number of assumptions:

• The coin is a perfect cylinder with radius R and thickness T , and has uniform density ρ. Thus the
mass M of the coin is ρπR2T .

• The coin’s rotation is always entirely about the z axis, as shown in Figure 1.

• The impulse J delivered by the surface on the coin on each successive bounce is related to the normal
velocity vN of the point that hits the table by a proportionality constant γ, such that J = γ|vN |. The
duration of the contact between coin and surface is negligibly short such that the effect of other forces
on the coin (i.e. gravity) are negligible.

• Air resistance is negligible and the acceleration due to gravity is g.

• The coin is flipped such that it has an initial angular momentum of L and its center of mass O has a
velocity vcm. It is flipped at the same level as the surface (initial height h = 0)

This model equips us with enough to begin analyzing what happens when the coin collides with the
surface.

Figure 3: Coin Hitting Surface
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2It is possible by using a substitution α = R sinu, thus leaving the integral in the form R4
∫

cos4(u)du. This can be solved

using the reduction formula
∫

cosn u dx = n−1
n

∫
cosn−2 u du+ cosn−1 u sinu

n
.
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We study the cross section of the coin when it hits the surface at a certain angle θ. There are three forces
acting on the coin during the collision: one force due to the electrostatic repulsion between the coin and the
table (labelled F ), the gravitational force Fg on the coin, and the friction force Ffr. Since the duration of the
collision is short (on the order of 10−2 seconds), the impact of this force is negligible. The horizontal friction
force also acts on the coin due to the coin’s horizontal velocity at the time of impact, providing an additional
torque. However, again, the static friction coefficient µ is not high enough to provide a significant torque
over the tiny duration of the impact. On the other hand, the normal force F is significant. We separate F
into two components Fc, which does not rotate the coin, and Fτ , which purely rotates the coin.

Fc cos θ − Fτ sin θ = 0 (a)

Fc sin θ + Fτ cos θ = F (b)

By (a), we have Fc = Fτ
sin θ
cos θ = Fτ tan θ. Substituting this into (b), we get:3

Fτ tan θ sin θ + Fτ cos θ = F

Fτ

(
cos θ +

sin2 θ

cos θ

)
= F

Fτ
cos2 θ + sin2 θ

cos θ
= F

Fτ = F cos θ (1)

Fc = F sin θ (2)

However, we must note that we have no idea what F might be - interestingly, we also have no need to
solve for F . Simply using the relation for impulse J = γ|vN | allows us to find the information we need, since
J =

∫
F dt. Our goal is to find the change in angular velocity ∆ω and the change in center of mass velocity

∆vcm due to this collision. We begin by finding ∆vcm:

∆vcm =

∫
a dt

We are only interested in the change in vertical velocity of the coin - so we take only the vertical component
of Fc.

=

∫
Fc sin θ dt

M

=

∫
F sin2 θ dt

M

=
sin2 θ

M

∫
F dt

=
sin2 θ

M
J

=
γ|vN | sin2 θ

M

Finding the change in angular velocity ∆ω is slightly more complicated. The torque delivered by the
force Fτ is related to torque by τ = R × Fτ . Since Fτ is at right angles to R, we can see that |τ | = RFτ .
Torque is the rate of change of angular momentum dL

dt , so we see that the change in angular momentum
|∆L| =

∫
RFτ dt. Thus, by a similar process to our last calculations, we see that |∆L| = γR|vN | cos θ.

However, L is related to ω by L = Iω, and thus:

|∆ω| = γR|vN | cos θ

I

=
4γ|vN | cos θ

MR
3Of course, our result (1) and (2) is clear when considering Fτ and Fc as the edges of a rectangle, and taking F to be the

diagonal.
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The direction of ∆ω (whether it is positive or negative) depends on the angle θ at which the coin hits
the surface. By inspecting the two cases where θ < π

2 and θ > π
2 , we see that when θ < π

2 , ω decreases,

and vice versa. Thus we have ∆ω = − 4γ|vN | cos θ
MR .

It is now appropriate to find out what vN is. It is quite simple - in fact, it is the vector sum of the edge
of the coin’s rotational velocity (normal to the surface) and the coin’s center of mass velocity:

vN = −ωR cos θ + vcm

We have a term −ωR cos θ because the edge of the coin is moving downwards at θ < π
2 and vice versa.

Since the |vN | we have been using is assumed to be positive in all our calculations and vN is negative, we
can now say that |vN | = ωR cos θ − vcm. Plugging this in to our equations, we see:

∆vcm =
γ(ωR cos θ − vcm) sin2 θ

M
(3)

∆ω =
4γ(vcm − ωR cos θ) cos θ

MR
(4)

The two equations (3) and (4) are the key to analyzing the coin’s motion.

3.1 Final State

The coin will be considered to have settled, or be in a position to settle on a particular side in a specific
set of conditions. We call this state of settling or preparedness to settle ‘equilibrium’. Since we are only
interested in the case where the coin reaches equilibrium on its edge, we solve only for this specific case. If
the coin had no center of mass velocity and no angular velocity, the following would be considered a case in
which it was about to settle on its side:

Figure 4: Equilibrium Conditions

θ

N

A

CB

In the case where vcm = 0 and ω = 0, this is considered to be a coin in equilibrium. The right triangle
4ABC is the key to equilibrium, where A is the point of contact of the coin with the surface, and C is the
opposite corned to A. C must be directly above A, as shown by the vertical vector N that runs through
A and C. Since the angle θ characterizes equilibrium, we wish to find it. By simply geometry we see that
6 BAC = arctan T

2R . Since θ + 6 BAC = π
2 , θ = π

2 − arctan T
2R . By symmetry, another acceptable θ is

π
2 + arctan T

2R . For brevity, we label arctan T
2R as ε. Thus θ = π

2 ± ε. So our conditions for the special
equilibrium is:

π

2
− ε ≤ θ ≤ π

2
+ ε (5)
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Of course, vcm 6= 0 (it is less than 0 at time of impact) and ω 6= 0. Instead, we use (3) and (4) to predict the
new velocity v′cm and angular velocity ω′ of the coin after the collision. Since θ ≈ π

2 , we can approximate
sin θ ≈ 1 and cos θ ≈ 0 and use a much more simplified form of (3) and (4):

v′cm ≈ vcm −
γvcm
M

= vcm

(
1− γ

M

)
ω′ ≈ ω +

4γvcm · 0
MR

= ω

The coin will end up in another equilibrium with (5) if and only if a certain condition is met, which
we now investigate. If the coin is to land again where θ ≈ π

2 , we can safely estimate that the time t that

the coin spends in the air is
2v′cm
g by simple kinematics. Now, since we wish for the coin to end up in a

new equilibrium with (5) after the collision, we must restrict the angle Θ rotated through by the coin to
certain values. We see that in the first collision, there exists a ’padding’ between θ and its two boundaries.
θ exceeds the minimum allowed value by a certain amount Ca = θ − π

2 + ε and is also under the maximum
allowed value by an amount Cb = π

2 + ε− θ. So, the coin may turn through any multiple of π, and then an
additional angle Cb - or it may turn through a small angle Ca less any multiple of π. Formally:

nπ − Ca ≤ Θ ≤ nπ + Cb

We know the angle turned through by the coin is Θ = ω′t ≈ ω 2v′cm
g . Thus:

nπ − Ca ≤
2ωv′cm
g

≤ nπ + Cb

g(nπ − Ca)

2
≤ v′cmω ≤

g(nπ + Cb)

2
(6)

However, we may further reduce (6) by observing something very simple. Since angular velocity remains
constant, rotational kinetic energy remains constant. Therefore, kinetic energy must be strictly decreasing
since energy losses due to friction and air resistance are inevitable - and along with this, a strictly decreasing
velocity vcm. This means that a ’final’ equilibrium position cannot be reached unless n = 0. If n ≥ 1, the
velocity v′cm will begin to decrease, and since our condition (6) is very sensitive4 to changes in vcm. As vcm
is continually decreasing in small increments, it will inevitably break (6). Thus, the only case where we can
reach a final equilibrium of sorts is where n = 0 and v′cm is small5. Thus:

−gCa
2
≤ v′cmω ≤

gCb
2

−
g(θ − π

2 + ε)

2
≤ vcmω

M − γ
M

≤
g(π2 + ε− θ)

2

Note that M−γ
M < 0.

gM(π2 − θ + ε)

2(M − γ)
≤ vcmω ≤

gM(π2 − θ − ε)
2(M − γ)

(7)

3.2 Restricting γ

Up until now, we have been operating under the assumption that γ can simply take any positive value.
However, this is not so - we can see why by taking the case where θ = π

2 and ω = 0. We have already
calculated that the new velocity v′cm after collision in this case is related to the old vcm by: v′cm = vcm(1− γ

M ).
In the case where θ = π

2 and ω = 0, the coin has no rotational kinetic energy and acts as a normal bounding
object. Thus, we can introduce a physical quantity called the coefficient of restitution. This coefficient k is

4We see that v′cm can only take a range of values of size g
2ω

(Ca + Cb) = gε
ω

. Since ε ≈ 0, we see that any small changes in
vcm will immediately break (6).

5This is because if is too high, the coin will have the chance to turn again after the next bounce that we have predicted for.
By setting a minimum bound on the next velocity v′cm, we can consider the next bounce to be the final bounce. It turns out
that changing the sensitivity of the small v′cm condition has virtually no effect after we set the condition to v′cm ≤ 0.01.
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the ratio of the initial to the final speed of an object after collision: e =
|v′cm|
|vcm| . By conservation of energy, of

course, this quantity e < 1. It is characterized by the two objects involved in the collision. This is the true6

physical quantity that we must use, not γ, so we wish to express γ in terms of e:

v′cm = vcm

(
1− γ

M

)
|v′cm| = |vcm|

( γ
M
− 1
)

1
γ
M − 1

=
|vcm|
|v′cm|

M

γ −M
=

1

e

γ = M(e+ 1) (8)

3.3 Finding θ

The final variable that we have yet to solve for is the variable θ of collision. Of course, the current collision
angle θ depends on the last collision angle θ̄, along with the current angular velocity ω and center of mass
velocity vcm. By approximating the coin as a line, we can find an expression for the height z of any point in
the coin at a certain radius R. We note that the relationship between the last angle θ̄ and the current angle
θ is the same is the relationship between the current angle θ and the next angle θ′. Thus, we study how θ
and θ′ are related.

Figure 5: Airborne Coin’s Evolution Over Time
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The height h of the center of mass O over time is shown in the diagram. The path of the ends of the
coin are shown in red and blue. With this diagram, it becomes easy to find the height z of any point on the

coin at a radius r. We can see that h(t) = h(t1) + v′cmt−
gt2

2 . However, by simple geometry we can see that
h(t1) = R sin θ, so that

h(t) = R sin θ + v′cmt−
gt2

2

The angle Θ(t) evolves over time with the angular velocity and the initial angle θ so that Θ(t) = θ + ω′t.
The height z of any point on the coin at a radius7 r away from the center O is thus the vector sum of the

6γ is, in fact, dependent on the mass M of the object colliding with the surface, as shown in (8). Thus, it cannot be said to
be a true physical quantity, only a mathematical construct for the sake of brevity.

7We take the end of the coin with the blue path to be +R and the end with the red path to be −R.
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height of the center of the coin h(t) and vertical distance from that point to the center:

z(r, t) = h(t)− r sin
(
Θ(t)

)
= R sin θ + v′cmt−

gt2

2
− r sin (θ + ω′t)

We wish to solve z(r, t) = 0, where t 6= 0 so that we may find at what angle the coin hits the surface again.
However, we note that it is only possible for the coin to hit the surface where r = ±R, so we study only
z(R, t) and z(−R, t):

z(±R, t) = R sin θ ∓R sin (θ + ω′t) + v′cmt−
gt2

2

This equation can be solved numerically by trying values for t in small increments and taking the value
where z(±R, t) = 0 first. We call this solution t0. Despite the fact that this solution can only be obtained
numerically, it is interesting to approximate a value for t by observing that the height h(t1) ≈ h(t4), at most
differing by R. So if 0 ≤ h(t4) ≤ h(t1) +R, we can see that:

0 ≤ h(t1) + v′cmt0 −
gt20
2
≤ h(t1) +R

0 ≤ h(t1) + v′cmt0 −
g

2
t20 and v′cmt0 −

g

2
t20 ≤ R

0 ≥ g

2
t20 − v′cmt0 − h(t1) and 0 ≤ g

2
t20 − v′cmt0 +R

v′cm −
√

(v′cm)2 + 2gh(t1)

g
≤ t0 ≤

v′cm +
√

(v′cm)2 + 2gh(t1)

g

and

t0 ≤
v′cm −

√
(v′cm)2 − 2gR

g
or t0 ≥

v′cm +
√

(v′cm)2 − 2gR

g

We simplify these two conditions to:

v′cm −
√

(v′cm)2 + 2gR sin θ

g
≤ t0 ≤

v′cm −
√

(v′cm)2 − 2gR

g
(9)

or

v′cm +
√

(v′cm)2 − 2gR

g
≤ t0 ≤

vcm +
√
v2cm + 2gR sin θ

g
(10)

We try values of t in small increments according to (9) and (10) to solve numerically for z(±R, t) = 0.
Using equations (9) and (10), we may numerically solve for the duration t0 of a coin’s time spent in the

air between collisions - this gives us the coin’s next collision angle θ′ in terms of the coin’s current collision
angle θ by the equation8:

θ′ = (θ + ω′t0) % π (11)

We go further by predicting the coin’s next velocity of collision, which we call v̄cm, given its velocity after
bouncing back from the current collision v′cm:

v̄cm = v′cm − gt0 (12)

8We use the % symbol to imply remainder, instead of writing congruence and mod.
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3.4 Equations of Interest

To review the terminology and symbols used to this point, we have:

Table 1: Symbols and Notations Used
Symbol Meaning Sign Convention

vcm
Velocity of the center of mass of the coin

upon impact with the surface.
Negative

v′cm
Velocity of the center of mass of the coin

immediately after impact with the surface.
Positive

ω
Angular velocity of the coin

upon impact with the surface.
Positive for counterclockwise

rotation and negative for clockwise.

ω′
Angular velocity of the coin immediately

after impact with the surface.
The same as ω.

θ Angle at which coin hits the surface Positive
θ′ Angle at which coin hits the surface next Positive

t0
Duration that the coin spends

in the air between consecutive collisions.
Positive

v̄cm

Velocity of the coin on the next collision with
the surface (velocity of the coin

after being accelerated by g for t0 seconds).
Negative

e Coefficient of restitution. 0 ≤ e ≤ 1
R, T Radius and thickness of the coin, respectively. Positive
g Magnitude of acceleration due to gravity. Positive

With this, we are now in a position to rewrite our three governing equations (3), (4), (7) in a more
convenient form using a simplified γ. The equations of motion:

v′cm = vcm + (e+ 1)(ωR cos θ − vcm) sin2 θ (13)

ω′ = ω +
4(e+ 1)(vcm − ωR cos θ) cos θ

R
(14)

And the equilibrium condition:

−g(π2 − θ + ε)

2e
≤ vcmω ≤

−g(π2 − θ − ε)
2e

and v′cm ≤ 0.01

g

2e

(
θ − π

2
− arctan

T

2R

)
≤ ωvcm ≤

g

2e

(
θ − π

2
+ arctan

T

2R

)
and v′cm ≤ 0.01 (15)

4 Simulation

The equations (11), (12), (13), (14) and (15) gives us the necessary tools to create a simulation that nu-
merically solves these systems over each successive bounce. Thus we proceed by iterating over each bounce,
calculating the coin’s next velocity via (13) and its next angular velocity via (14). We end iteration when
either our equilibrium condition (15) is met, or v′cm ≤ 0.01. When v′cm gets so small that v′cm ≤ 0.01, it is
clear that no further turning progress can be made by the coin, since v′cm is strictly decreasing as seen by
(13). The problem now is strictly in implementation. The implementation for this model is available here
(https://github.com/andigu/Coin-Simulation).

9
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4.1 Initial Conditions

We note that the coin’s initial angular velocity ω0 and initial center of mass velocity v0 are by no means
fixed with a human ‘flipper’. We assume that these two variables take the form of a bell curve, so that our
code will give the coin an initial ω0 and initial v0 by random selection across a bell curve.

Figure 6: Frequency f of an Initial ω0 or v0

w0/v0

f

4.2 Results

The simulation was run over ω0 from 0 through 2 in increments of 0.002 for 1000 iterations, and over all v0
from 1 through 11 in increments of 0.005 for 2000 iterations. Running over each combination of ω0 and v0
yielded a total of 2 · 106 iterations. The remainder of parameters remained fixed, with the dimensions of the
coin closely matching a Canadian quarter, g = 9.8ms2 , and e = 0.5.

The number of times and initial configuration ω0/v0 of the coin when the coin landed on its edge were
recorded. Results indicated that there were 35 pairs ω0/v0 that were successful from 2 million trials. This
gives a naive probability of 35

2·106 = 0.00175%. Putting these pairs onto a scatter plot, a strong relationship
immediately emerges.

Figure 7: v0 vs. ω0

0 0.5 1 1.5 2 2.5
0

5

10

ω0 (rad/s)

v 0
(m

/s
)

v0ω0 = 2.71

This trendline v0ω0 = 2.71 is an especially strong fit, with a coefficient of determination of 0.8968. Yet
furthermore, this gives us a strong insight into the nature of this problem, especially in reference to (15).
We see that this product vω is a natural constraint in the problem - and of course emerges as a restriction
in the initial condition of the coin.
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4.3 Weighted Probability

Of course, the naive probability of ∼ 0.00175% is not entirely accurate. As illustrated in Figure 6, it is not
equally likely that any given ω0 or v0 is chosen. So instead we model both these variables along a bell curve
and observe the domain 0 through 2 for ω0 and the domain 1 through 11 for v0. We center the bell curve for
each at the midpoint of the domain and give it a standard deviation equal to quarter the size of the domain:

σv = 2.5 σω = 0.5

µv = 6 µω = 1

We can thus find the probability p(v0, ω0) of a certain pair v0, ω0 being chosen using the bell curve equation.
If the two bell curve equations for v0 and ω0 are A(v) and B(ω): p(v0, ω0) = 0.005A(v0) · 0.002B(ω0). This
is because the increment on v0 was 0.005 and the increment on ω0 was 0.002. Assigning these ‘weightings’
to each of our v0, ω0 pairs, we can find the overall probability P of a coin landing on its side by:

P =

∑35
i=0 p(v0,i, ω0,i)∫ 11

1
A(v) dv ·

∫ 2

0
B(ω) dω

=

∑35
i=0 p(v0,i, ω0,i)

0.911069746223
≈ 0.000011113

≈ 0.0011113%

5 Conclusion

So we have achieved a final result that the probability of a coin roughly the shape of a Canadian quarter, in
Earth-like conditions, has a probability of landing on its edge of ∼ 0.0011113%. Previous studies [1] have been
conducted on this subject with a more experimental approach. Their results are in strong agreement with the
theoretical results obtained in this simulation - most indicate a probability of around 1

60000 ≈ 0.0016667%.
This holds a strong agreement with the results obtained in this study.

It should be noted that there were a few approximations made in this experiment that prevent the cur-
rent model from being generalized to a cylinder of arbitrary thickness T , since the moment of inertia was
approximated to a simpler expression assuming that thickness was small compared to radius R. Further-
more, extreme situations with high initial velocity or high initial angular velocity will show that the model
departures from reality, due to effects from friction and air resistance. However, for realistic conditions that
closely resembled that on earth, it is clear that our model is closely aligned with reality.

In our analysis of the simulation results, there was a simple assumption made that the distribution of
initial velocity and initial angular velocity is shaped in a bell curve. The parameters of the bell curve, the
standard deviation σ and average µ were approximated to match real world conditions as much as possible
– but it is possible that errors were made in the approximation. This may have skewed results from the raw
collected data.
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